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Summary and Future Directions 
As we have tried to indicate, the study of noncovalent 

complexes involves a fruitful interplay between theory 
and experiment. We have concentrated our attention 
mainly on the structure and binding energy of such 
complexes; much theoretical and experimental work has 
concerned itself with spectroscopic properties (NMR, 
UV, IR), but we have not had space here to discuss 
t h e ~ e . ~ , ~ ’  

It is an important theme of our work that the 
“electrostatic” properties of molecules are a key to the 
structure and energy of their interactions, and we have 
tried to put all noncovalent bonding into a single 
picture. We do not feel there is anything intrinsically 
special about hydrogen bonding, van der Waals com- 
plexes, charge-transfer interactions, or ionic interactions 
but feel all are, to first order, electrostatic interactions. 
The other energy components are important, and we 
have tried to show specific examples of this. However, 
it is our opinion that the approach outlined above is the 
most sensible way to think about the directionality and 
relative energies of most noncovalent  interaction^.^^ 
Not only does it give a simple way to semiquantitatively 
systematize a large body of known facts but it also is 
consistent with more quantitative empirical potential 
function approaches to study intermolecular interac- 
tions. 

It is also worth stressing that the directionality of 
electrophilicity and nucleophilicity predicted from our 
simple model is often the same as that predicted by a 

(55) With the obvious exception of rare gas-rare gas and hydro- 
carbon-hydrocarbon interactions, which are likely to be mainly dispersion 
dominated. 

simple HOMO-LEMO picture. For example, the di- 
rection of the most positive electrostatic potential and 
the site of the largest LEMO coefficient in SOz coincide 
(above the molecular plane, approximately over the 
sulfur). Thus, it is likely that some of the features of 
our charge distributions can be used to rationalize 
chemical reactivity as well as noncovalent interactions. 
For the purpose of noncovalent interactions, we have 
stressed the electrostatic aspects, rather than the 
HOMO-LEMO aspects, of the charge distributions 
because of the many examples discussed above in which 
the electrostatic component has been the dominant 
determinant of directionality. 

We have concentrated in this Account on intermo- 
lecular effects, but there have been a number of ab 
initio studies on intramolecular interactions. These 
indicate that electrostatic effects, after factoring out the 
intramolecular geometry constraints and the energetic 
contributions from eclipsed bonds and other types of 
“strain”, can provide a qualitative prediction of strength 
and directionality of many intramolecular noncovalent 
 interaction^.^^ 
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In 1923 Debye and Huckell provided, in a simple 
theory, the correct equation for the behavior of elec- 
trolyte solutions in the limit of very low concentration. 
This eliminated an anomaly that had troubled physical 
chemists and allowed a great advance in the semi- 
empirical, semitheoretical treatment of dilute elec- 
trolytes a t  finite concentrations. While the severe 
approximations of Debye and Huckel were found not 
to affect the limiting law, great uncertainty2 remained 
concerning any higher order terms. 
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There were many intermediate advances3 through the 
years, especially in the work of Mayer, Kirkwood, 
Poirier, and Friedman. However, a really sound and 
fruitful theory for electrolytes a t  substantial concen- 
tration has only emerged in the last decade. While 
these contributions have been summarized in  review^^,^ 
addressed to specialists in statistical mechanics and 
electrolyte theory, it seemed desirable to call this ad- 
vance to the attention of physical chemists and solution 
chemists more generally. This more recent theory may 
be too complex for use or for presentation in some cases, 
but even then it should be realized that a rigorous 

(1) P. Debye and E. Huckel, Phys. Z., 24,185,334 (1923); 25,97 (1924). 
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(3) This work is reviewed by H. L. Friedman, “Ionic Solution Theory”, 

(4) H. C. Andersen, Mod. Aspects Electrochem., No. 11, 1 (1975). 
(5) J. C. Rasaiah, J. Solution Chem., 2, 301 (1973). 
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theory now exists. Thus one should evaluate the ac- 
curacy of the traditional Debye-Huckel theory by 
comparison with the rigorous theory for the same 
model. 

It is also possible to extend the DebyeHuckel theory 
in a simple manner to yield a relatively simple equation 
which is an excellent approximation.6 The recent 
theory suggests new forms of semiempirical equations 
which have proven to be remarkably successful in 
representing experimental results and in thermody- 
namic calculations. 

In reviewing and summarizing the recent develop- 
ment it is desirable to divide the complete theory into 
three parts. This division is equally applicable to 
Debye-Huckel theory; hence, we can discuss the im- 
provements in each part. The three parts are: (1) the 
selection of the molecular model, i.e., the interionic 
potentials of mean force, (2) the calculation of the 
interionic radial distribution functions from this model, 
and (3) the calculation of thermodynamic functions 
from the potentials and the radial distribution func- 
tions. 

Interionic Potentials 
In principle one would like to have an adequate 

theoretical treatment for water and to use it together 
with the properties of the ions to derive7 the interionic 
potentials of mean (or average) force in water. But 
there is not yet an adequate model for water. Hence 
one must start with a model for the interionic potentials 
of mean force. 

The potential of mean force is defined in a manner 
such that its derivative gives the force on the selected 
particle averaged over the motion of other particles in 
the system.8 Thus the familiar equation for the 
electrostatic potential in the presence of a dielectric is 
a potential of mean force; its derivative gives the force 
on a charged particle averaged over the motion of the 
particles constituting the dielectric. 

Any plausible model can be described by the inter- 
ionic potential equation 

(1) 

where zie is the charge on the ith ion, r is the distance 
between the i and j ions, D is the dielectric constant of 
the solvent, and u*(r) is a short-range function giving 
the difference between the true interionic potential of 
mean force and the electrostatic term. 

There is no question concerning the effect of the 
dielectric constant of the solvent in yielding the last 
term in eq 1 for sufficiently large interionic separation. 
All effects yielding departures from this electrostatic 
term are combined in uil*(r). These include a t  inter- 
mediate distances a variety of effects related to the 
molecular nature of the solvent (solvation, dielectric 
saturation, etc.) as well as dispersion forces between the 
ions and at shorter distances the direct repulsion of ions 
as their electron shells begin to overlap. 

The simplest assumption for u*, used by Debye and 
Huckel and frequently called the primitive model, is 

u i j ( r )  = ui j*(r )  + x i z j e2 /Dr  

(6) K. S. Pitzer, J .  Phys. Chem., 77, 268 (1973). 
(7) An interesting approach toward the derivation of interionic potentials 

of mean force is given by G. N. Patey and J. P. Valleau, J .  Chem. Phqs., 
63, 2334 (1975). 

(8) T. L. Hill, “An Introduction to Statistical Thermodynamics”, 
Addison-Wesley, Reading, Mass., 1960, p 313. 

uij* = +m, r < a 

u i j *  = 0, r > a 

where the hard-core diameter a is the same for all ions. 
A first improvement is to make the hard core distance 
in (2) the sum of radii which may differ for the positive 
and negative ions in a salt. Further improvements are 
continuous functions reflecting the softness of the direct 
interionic repulsion and the short-range effects of the 
solvent. Since there has been a major advance in the 
correct solution of the primitive model, we will proceed 
at once in describing that theory. But we will describe 
equations valid for other forms of u* and will eventually 
discuss some results for another model. 

While improvements in part 2, the calculation of the 
radial distribution function, were important, the most 
critical advance was for part 3; hence we discuss part 
3 next. Debye and Huckel were unable to include the 
direct effect of the short-range potential u* on ther- 
modynamic properties; they included only the indirect 
effect of u* on the electrostatic term (and even that only 
partially). 
Equations Yielding Thermodynamic Functions 

An adequate theory relating intermolecular potentials 
and radial distribution functions to thermodynamic 
functions was first developed for simple fluids such as 
argon. For the energy content the result is rather easily 
derived: 
E 3  1 N -  
N 2  2 v  0 
- - -  - kT + -- S u(r)g(r)4nr2dr (3) 

where g(r )  is the radial distribution function and u(r) 
is the intermolecular potential. It is considerably more 
difficult to obtain a useful relationship for free energy, 
but somewhat indirect approaches were successful. The 
most direct and useful gives the pressure 

( 4 )  
N du S r- g(r)(47rr2)dr ----=1-- 

Nk T 6VkT o ar 
PV 

Given the pressure as a function of volume, other 
functions can be calculated from thermodynamic re- 
lationships. There is also an equation for the com- 
pressibility which provides a useful check, but the 
pressure equation is ordinarily the most convenient. 

This theory for simple fluids can be found in a 
number of books on statistical mechanics; for example, 
Fowlerg and Henderson and DavisonlO give derivations 
based on the virial theorem. A different and relatively 
simple derivation based on the volume derivative of the 
partition function is given by Davidson’’ and by Hill.12 
Still another derivation has been given by Hill.13 

The generalization of these equations to multicom- 
ponent fluids is relatively straightforward. But we can 
hardly deal in detail with all of the solvent molecules 
as well as the solute; hence some method of averaging 
over solvent effects is essential. This was provided by 
McMillan and Mayer14 who considered a solution in 

(9) R. H. Fowler, “Statistical Mechanics”, Cambridge University Press, 
Cambridge, England, 1936, p 286. 

(10) D. Henderson and S. G. Davison, in “Physical Chemistry, an 
Advanced Treatise”, Vol. 11, H. Eying, Ed., Academic Press, New York, 
N.Y., 1967, p 359. 

(11) N. Davidson, “Statistical Mechanics”, McGraw-Hill, New York, 
N.Y., 1962, p 473. 

(12) T. L. Hill, “Statistical Mechanics”, McGraw-Hill, New York, N.Y., 
1956, p 190. 

(13) Reference 8, p 304. 
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Figure 1. Osmotic equilibrium for the McMillan-Mayer theory. 
The solute is component 2 and the total pressure on the solution 
in the right side is P + T. 

osmotic equilibrium with pure solvent through a sol- 
vent-permeable, solute-impermeable membrane; see 
Figure 1. They showed that the entire array of 
equations for molecules in imperfect gases (fluids) 
applied to the solute in this system provided one used 
potentials of mean force at  infinite dilution in the 
solvent and interpreted the pressure as the osmotic 
pressure. There are some questions of convergence for 
long-range electrical forces, but these have been an- 
swered. 

Hill15 gives both a simplified and a more rigorous 
account of the McMillan-Mayer theory. 

Rasaiah and Friedman'' were the first to take full 
advantage of this theory for application to electrolytes. 
The pressure equation now yields the osmotic coeffi- 
cient for the solution 

qJ - 1 = (rI/ckT) - 1 

where ci is the concentration of the ith ion and c is the 
total concentration of solute species, c = Cc,. Once 4 
is known as a function of concentration, the activity 
coefficient can be calculated from the Gibbs-Duhem 
equation. 

It should be noted (see Figure 1) that these functions 
apply to the solution under a pressure equal to its own 
osmotic pressure plus the pressure on the pure solvent 
rather than to the usual standard pressure of 1 atm. 
Friedman'" has discussed the conversion between these 
states and provides the needed equations. The dif- 
ferences are negligible for our purposes. 

Rasaiah and Friedman'' also derived the analogue of 
the compressibility equation for the electrolyte system 
and used it to verify certain calculations. 

Although the complete theory underlying eq 5 is 
complex and lengthy, it is rigorous and provides a valid 
means to obtain thermodynamic properties provided 
both the potentials of mean force and the radial dis- 
tribution functions are available. 

Radial Distribution Functions 
We turn now to the problem of obtaining the radial 

distribution functions from the potentials. The basic 
equation of statistical mechanics18 for the radial dis- 

(14) W. G. McMillan and J. E. Mayer, J.  Chern. Phys., 13,276 (1945). 
(15) T. L. Hill, ref 8, p 341, is the simplified account of McMiUan-Mayer 

theory. A more rigorous account is in ref 12, p 262. See also Andersen, 
ref 4, p 7. 

(16) J. C. Rasaiah and H. L. Friedman, J.  Chem. Phys., 48,2742 (1968); 
50, 3965 (1969). 

(17) H. L. Friedman, J. Chem. Phys., 32, 1351 (1960); see also the 
appendix in ref 29 and ref 3, p 207. 
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Figure 2. The radial distribution functions (g+- above, g++ = 
g__ below) for 0.00911 M aqueous solution (1-1 type, a = 4.25 A). 
The points are Monte Carlo calculations, the solid curve is the 
exponential D-H expression, the dotted and dashed curves are, 
respectively, the three-term and two-term D-H expressions. 

tribution function (or pair correlation function) yields 
for a pair of like ions in a binary electrolyte 

gi i ( r )  

( 6 )  

where + is the total potential energy for all pairs of ions 
interacting in accordance with the potentials u@) of 
eq 1. Note that the numerator differs only in that the 
first two coordinates for the ith type of ions are not 
integrated. 

For the radial distribution function for a pair of 
unlike ions the analogous equation is 

J . . .Jexp(-@ / k  T)dri  3 .  . .driN drj l .  . .drJN 
J. . .Jexp(-@/kT)dri l .  . ,dr iNdrj l .  . .drjN 

V 2  

gij(r)  = 

V 2  (7)  

where now the integral in the numerator omits the 
integration over the coordinates of one ion of each type. 

These basic equations may be evaluated directly by 
Monte Carlo methods.lg Such calculations involve 
numerical approximations and various technical fea- 
tures, but they may be made as accurate as desired with 
the expenditure of sufficient care and computer time. 
Vorontsov-Veliaminov et al.20,21 and Card and ValleauZ2 
have made significant Monte Carlo calculations for 
electrolytes. We shall present the results of Card and 

J . . .Jexp(-@ / k T ) d r i 2  . . .driN drj2. . .drjN 
J. . .Jexp(-@ / k  T)dr i l .  . .driN drj . . .drjN 

(18) See Davidson, ref 11, Chapter 2, or Hill, ref 8, Section 17-4. 
(19) J. A. Barker and D. Henderson, Reu. Mod. Phys., 48,587 (1976). 
(20) P. N. Vorontaov-Veliaminov, A. M. Eliashevich, and A. K. Kron, 

Elektrokhimaya, 2, 708 (1966). 
(21) P. N. Vorontsov-Veliaminov and A. M. Eliashevich, EEektro- 

khirnaya, 4, 1430 (1968); Strukt. Rol. Vody. Zhiuom. Org., 2, 99 (1968). 
(22) D. N. Card and J. P. Valleau, J.  Chern. Phys., 52, 6232 (1970). 
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Figure 3. ‘rhe radial distribution frrnrtions for 0.425 M solution; 
other aspects the same as in Figure 2. 

Valleau which are based on the primitive model ap- 
propriate for aqueous solul ions at room temperature 
and for a uni-univalent solute with u = 4.25 A. The 
results are shown as points on Figures 2 and 3. 

In addition to the conibinatiori of Monte Carlo eal- 
culations with eq 5 to obtain thermodynamic quantities, 
the method of “r~nolecular dynamics" would dso provide 
a rigorous rrumerical solution for an electrolyte within 
the McMillan-Mayer solution theory framework. In 
this methodlg the motions of a number of particles are 
followed by integration of the equations of motion 
subject to the potentials assumed. Then the desired 
quantities are determined from averages over the 
motion. It has been successfully applied to nonelec- 
trolyte fluids with results comparable to those of the 
Monte Carlo method, and an exploratory calculation 
has just been reported for an electrolyteaZ3 

While we shall presently mention some other recent 
theories, let us first compare results which can be 
derived from the Debye -8uckel treatment with the 
Monte Carlo results. 

In the converrtional rJebye--I-lhckel treatmentz4 the 
concentration of ionic species i near an ion of species 
j is given by the Boltzmann expression 

( 8 )  
where c, is the average concentration and $](r)  is an 
electrostatic potential associated with the ion j .  This 
implies a radial distribution function 

C l f  = e, exp( z , e$ , / kT )  

& ( r )  = exP(- W $ ] ( r 1 / w  (9) 
The Debye-Hiickel treatment then combines the 

concentrations of all charged species to yield the charge 
density 

(23) P Turq, F Lantelme, and H L Fiiedmaii, J Clzeni Phys , 66, 

(24) R. A Robinson and R H. Stokes, “Electrolyte Solutions”, But- 
3039 (1977). 

terworths, London, 1955; revised 1959, Chapter 4 
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p j ( r )  = &zieci‘ 
I 

= Tzieci  e ~ p ( - - z ~ e $ ~ / h T )  (10) 

The exponentials are expanded, yielding 
pi(r) = eFzici  - (e2i l / j /kT) 7zi2ci -t 

1 1 

( e 3 $ j 2 / 2 h ~ ~ 2 ) ~ Z i 3 C i .  . . . (11) 

From electrical neutrality the first term on the right is 
zero. The second term is clearly nonzero and is the only 
term used for p in the usual treatment, where the 
Poisson equation now takes a linear form 
” *$  = --(471/0)p 

= K 2 $  

Appropriate boundary conditions then yield 

where 

K ’  = (4ne2/DkT)Czi2c i  i (14) 
and a is t,he diameter of the hard core in eq 2. 

becomes 
Let us return to the distribution function which now 

gij = exP(--qij) (15) 

Clearly the required symmetry to exchange of i and j 
is present. However, for the Poisson equation the 
exponentials in p were expandedz5 and only the second 
term was used. Thus it can be argued that it is in- 
consistent to retain the exponential form for gij. Since 
this entire treatment is approximate, this objection has 
limited significance. Alternatively one may note that 
the third term in the expanded form for the charge 
density is zero for a symmetrical electrolyte. Thus, 
without any inconsistency for symmetrical electrolytes, 
one may retain the third term in the expansion and the 
corresponding expression for the radial distribution 
function is 

g - ( r )  11 = 1 -- q i j  + q i j 2 / 2  (17)  
The original Debye-Huckel approximation can be re- 
garded as the first two terms 

(18) 
In Figures 2 and 3 we compare the exponential form 

(15), the three-term form (17), and the two-term form 
(18) for gij with the “exact” results of the Monte Carlo 
calculations for the case a = 4.25 A and solvent 
properties for water at 25 “C.  For the dilute solution, 
0.00911 M, in Figure 2 one notes that the exponential 
form is, indeed, an excellent approximation which 
agrees with the Monte Carlo results essentially within 
the computational uncertainty of the latter. The 
three-term “extended D-H” approximation agrees very 
well except for r values just above a. Here g+- is a little 
too small and g++ shows a false increase as r decreases 
below 6 A. 

g . . ( r )  = 1 -- 4.. 
11 11 

(25) There is an extended literature on solution of the Poisson equation 
without the linear approximation; see D. M. Burley, V. C. L. Hutson, and 
C. W. Outhwaite, Mol. Phys., 23,867 (1972), and references cited therein. 
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The two-term approximation is satisfactory for large 
r but deviates considerably at small r. The function for 
like ions even goes negative below about 6 A; this is 
quite unacceptable. Since the three-term formula 
involves no inconsistency with the original derivation 
(for symmetrical electrolytes), there would appear to 
be no reason for further use of the much poorer two- 
term approximation. 

Figure 3 gives the same functions for a moderately 
concentrated solution, 0.425 M. The same comments 
apply as for the dilute solution, although the differences 
in the various D-H approximations are somewhat re- 
duced. 

We can now bypass the many objections’ to the 
formulation of D-H theory by noting that it yields good 
agreement with the correct radial distribution function, 
particularly in the exponential form. 

In applying any of these radial distribution functions 
with hard-core potentials to eq 5, one faces an anomaly 
in the integral at r = a where au/ar is infinite. This has 
been resolved mathematically and yieldsz6 for the os- 
motic coefficient 
@ - 1 = ( n / c k T )  - 1 

a u . .  
= (6ckT)- ’  F p i c j S a  r A g i j ( 4 m 2 ) d r  

1 J  a r  
2.rra3 + - Czc,cjg,j(a) 3~ i j  

where gij(a) is the value of g&) for r infinitesimally 
greater than a. 

For the Monte Carlo calculations gi , (r)  must be ex- 
trapolated to r = a; this adds some numerical uncer- 
tainty. The various D-H expressions are unambiguous 
for g&); hence, there is no difficulty in evaluating the 
expressions in eq 19. Also there is some cancellation 
of the errors of the g ( a )  values for the three-term ap- 
proximation. For the exponential form, the integral can 
be evaluated only numerically, but for the two- or 
three-term approximations, eq 18 and 17, the inte- 
gration yields simple functions. The latter result is 

@ - l =  + -K 

2 4 ~ c ( l  + K U )  

3 + 48nc2(1 + Ka)’ 
K 4 a  1 

It is convenient to define 
w = F Z j ’ ( C i / C )  

which is an average value of z? and becomes z2  for a 
symmetrical electrolyte. Then 

+ -WIK 
6(1 + Ka) 

@ - l =  

3 

3 ( 1  + Ka)’ 

where 1 = e 2 / D k T  and K~ = 4 ~ 1 ~ .  In both eq 20 and 
22 the first term, which contains the D-H limiting law, 
arises from the second term in the expansion of g,+ This 
is the term that leads to nonzero charge density; it can 
be thought of as the primary electrostatic term. The 

(26) See Barker and Henderson, ref 19, p 591 
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Figure 4. The osmotic coefficient for a 1-1 type aqueous 
electrolyte at 25 “C. Solid circles are experimental values for HBr. 
Open circles are calculated by the Monte Carlo method (a = 4.25 
A). The solid curve is based on the three-term D-H expression 
and the “pressure” equation while the dashed curve is the tra- 
ditional D-H expression based on the “charging process”. 

first term, unity, in the expressions for gij yields the 
term c(2?ra3/3) which would be the kinetic effect of the 
hard core in the absence of electrical effects. The last 
term in (20) and (22) arises from the third term in the 
expressions for gij and would be absent if only the D-H 
two-term expression were used. This term gives the 
increased hard-core repulsive effect caused by the 
electrical interactions. 

Figure 4 shows, for the case a = 4.25 a and a 1-1 
aqueous electrolyte, the osmotic coefficient from the 
Monte Carlo calculations, that from the three-term 
D-H approximation of eq 22, and that from the original 
D-H formula which was derived by a charging process 

@ - 1 -(K3/247TC)U(Ka) ( 2 3 )  
where 
u(x) = ( 3 / x 3 ) [ 1  -t x - (1 + x ) - ’  - 2 In (1 + x ) ] ( 2 4 )  

This model fits the observed data for HBr very well, 
and the experimental osmotic coefficients for HBr are 
also shown on Figure 4. The three-term D-H ex- 
pression is an excellent approximation. The original 
D-H equation is a useful approximation, however, only 
below 0.01 M. The three-term D-H expression for gLj 
had been recognized earlierz4 as a good approximation, 
but so long as the charging process was used to calculate 
thermodynamic properties it did not yield any im- 
provement over the two-term expression. 

Thermodynamic equations may be used to transform 
eq 22 to the forms for the activity coefficient and the 
excess Gibbs energy. With the assumption that con- 
centration is proportional to molality, the results are 

3(1 l iaw2l2 + Ka)2 1 
1 1 W [ L +  -In 1 (1 + Ka) + G e X / c k T  = - - 

6 ~ + K U  a 

C ( F >  
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Figure 5.  Radial distribution functions for LiBr at 0.4 M. The 
solid curves are based on a refined model, see text; the dashed 
curves on the primitive model. 

In addition to the Monte Carlo method, which is 
exact in principle, a number of approximate equations 
or methodsz7 have been proposed and applied recently 
to the calculation of the radial distribution functions 
for electrolytes. While these yield equations which 
usually require less computation than the Monte Carlo 
method, their derivation is more complex and the 
evaluation of possible errors from the approximations 
is even more complex. Indeed, now that Monte Carlo 
solutions are available, these other methods are tested” 
by comparison with the Monte Carlo results for 
identical potential models. 

The principal advantage of these other methods arises 
from the possibility of exploring a variety of interionic 
potentials with less computational cost than the Monte 
Carlo method would require. This has been done by 
Friedman and Rasaiah and  collaborator^.^^^^@ They 
used the “hypernetted chain equation” and tested its 
accuracy in various ways, including comparison with 
Monte Carlo results.28 We shall not discuss these re- 
sults in detail but show in Figure 5 the radial distri- 
bution function for LiBr obtained by Ramanathan and 
Friedman.29,31 They assumed the bare-ion repulsive 
potentials obtained in studies of ionic crystals and 
adjusted the potentials at  intermediate distances to 
obtain agreement with experiment. The final potentials 
are smooth functions of radius. I t  was found that the 
selection of the three potentials (Li+-Ei+, Li+-Br-, and 
Br--Br-) a t  intermediate distances was not unique; 
many alternatives fitted the osmotic coefficients equally 
well. 

For comparison, the D-H exponential radial distri- 
bution functions are also shown in Figure 5 for a value 
of a = 4.0 A which fits the experimental data for LiBr 
reasonably well. There are Monte Carlo resultsz1 for 

(27) See ref 16; also several cited in ref 4 and 5. 
(28) J. C. Rasaiah, D. N. Card, and J. P. Valleau, J. Chern. Phys., 56, 

(29) P. S. Ramanathan and H. L. Friedman, J. Chern. Phys. ,  54,1086 

(30) J. C. Rasaiah, J. Chern. Phys., 52, 704 (1970). 
(31) Numerical values of the distribution functions supplied by Professor 

248 (1972). 

(1971). 

H. L. Friedman. 

a = 4.0 A but not at the molality 0.4 of the other curves 
in Figure 5. The Monte Carlo results at  other con- 
centrations, however, show agreement with the D-1-1 
exponential functions. 
Equations for Use in Chemical 
Thermodynamics 

For chemical thermodynamic calculations for ellec- 
trolytes it is usually preferable to use semiempirical 
equations rather than purely theoretical equations since 
the latter are either very complex or contain significant 
approximations. Also at  present any theoretical 
equation is based on a model whose accuracy is subject 
to argument. The semiempirical equations include the 
D--H limiting law and such other features taken from 
theory as seem useful. 

The traditional D-H result, eq 23 for 4 or the more 
familiar 
lny,  - = - w l ~ / 2 ( 1  + ~ a )  (27) 

is seen from Figure 4 to become inadequate even at very 
low concentration. Equation 27 is commonly extended 
with a term analogous to the second term in eq 20 and 
22. After rearrangement and for a symmetrical elec- 
trolyte, this becomes 

, I n  r l i 2  

where A,  is the traditional D-H parameter, m is the 
molality, and I is the ionic strength. Also p = K ~ / W  
and j3 are parameters generally related to the diameter 
of the ions. The corresponding form for the osmotic 
coefficient is 
4 - 1 = - z * A ~ ~ ~ ’ ~ u ( ~ I ” ~ )  + pm (29) 

Guggenheim3’ proposed taking p = 1 for all solutes 
and letting the specific properties of each solute appear 
in j3. This system has been widely used33 with con- 
siderable success. But with P a constant, this equation 
still does not fit the better quality data within exper- 
imental accuracy over a substantial range in m. 

The needed improvement6 is suggested by the last 
term in eq 20, 22, and 25. One notes that this term 
which decreases with increasing ionic strength (in- 
creasing K) is added to the constant term, 2 m 3 / 3 ,  in (22) 
to yield the quantity equivalent to j3 in eq 28 and 29. 
A directly analogous form would be 

( 3 0 )  p = p ( O )  + [ p / ( I  + Q i P 1 2 ) 2 J  

while a somewhat simpler form with similar properties 
is 

(34 1 
These forms were tested6 with a wide range of accurate 
osmotic coefficient data, and the second (eq 31) was 
found to be slightly better. In each case pC@) and P(l) 
were freely adjusted for each electrolyte while a was 
optimized but to a single value for all solutes. Similarly 
the two forms for the electrostatic term, in eq 22 and 
23, were compared6 and the more recent (eq 22) was 
slightly superior. The resulting practical equation for 

= p ( O )  + ~ ( l )  exp(-cd1’2) 

(32) E. A. Guggenheim, Phil. Mag., [7] 19.588 (1935); E. A. Guggenheini 
and J. C. Turgeon, Trans .  Faraday Soc., 51, 747 (1955) 

(33) K. S. Pitzer and L. Brewer, revised edition of “Thermodynainics” 
by G. N. Lewis and M. Randall, McGraw-Hill, New York, N.Y., 1961. 
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the osmotic coefficient of a single symmetrical elec- 
trolyte is 

Q - 1 -ZZA@l’ / ’ / ( l  + br”’) + m[f l“’~x  -t 
p ( l ) M X  e ~ p ( - a ~ “ ~ ) ]  + ~ ’ c @ M X  (32) 

where b is kept the same for all solutes with a best value 
of 1.2, a is 2.0 for all 1-1 and many other electrolytes, 
and an additional term in m2 has been added to extend 
the equation to very high concentrations. Equation 32 
fits the experimental osmotic coefficients for over 200 
pure aqueous electrolytes essentially within experi- 
mental accuracy.34 

The corresponding equation for the activity coeffi- 
cient is 
In y, = -z2A@ [I1”/(1 + b1”’) + (2/b) In (1 + - 

b1’”)] + m{2P(’)Mx + (2fl‘”MX/a21)[1 - 
(1 + ( ~ 1 ” ~  - az1/2) e ~ p ( - a P / ~ ) ]  } + 

‘(3c @M X/2) (33) 
These equations become only a little more complex for 
unsymmetrical solutes. Even for mixed  electrolyte^^^ 
the corresponding equations are relatively simple, and 
all of the more important parameters are determined 
from the data on single solutes. The result is an ex- 
tremely general and compact representation of the 
known properties of aqueous electrolytes which also has 
the capacity of prediction of properties of mixtures to 
useful accuracy. 

Summary 
First we recall that there is not yet an adequate 

theory for water (or for other ionizing solvents); hence 

(34) K. S. Pitzer and G. Mayorga, J.  Phys. Chem., 77, 2300 (1973); J. 

(35) K. S. Pitzer and J. J. Kim, J .  Am. Chem. Soc., 96, 5701 (1974). 
S o h .  Chem., 3, 539 (1974). 

any theory must start with assumptions concerning the 
interionic potentials of mean force in the solvent. From 
that point, however, we now have an exact theory which 
can be applied numerically to obtain as accurately as 
desired the interionic radial distribution functions and 
thermodynamic properties. 

There is no longer any need to speculate about the 
net inaccuracies in the Debye-Huckel theory, or ex- 
tensions thereof, or of other approximate theories. 
These questions can be answered by comparison with 
calculations based on exact theories. The original D-H 
expression which contained no contribution from the 
direct effects of short-range forces is seriously inade- 
quate outside of the range of the limiting law. But the 
D-H calculation of interionic distribution functions is 
found to be surprisingly accurate in either the expo- 
nential or three-term expansion form (at least for the 
model for aqueous 1-1 electrolytes with ionic diameters 
near 4 A). The three-term expansion form of these 
distributions can be used in the “pressure” equation to 
yield a simple but relatively accurate expression for the 
osmotic coefficient up to about 1 M for this model. 

It is now feasible also to investigate more realistic 
interionic potentials. This should be very valuable in 
the future, although the requirement of fitting osmotic 
and activity coefficient data is not likely to yield a 
unique determination of the short-range potential. 

The recent theory suggested important improvements 
in the form of semiempirical equations. Reasonably 
simple equations are now available which fit within 
experimental accuracy a wide variety of data on pure 
and mixed electrolytes. Also, since the more important 
parameters are determined from the single solutes, the 
equations allow prediction of the properties of mixtures. 
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